Braided Picard groups and graded extensions of braided tensor categories
نویسندگان
چکیده
We classify various types of graded extensions a finite braided tensor category $$\mathcal {B}$$ in terms its 2-categorical Picard groups. In particular, we prove that by group A correspond to monoidal 2-functors from the (consisting invertible central -module categories). Such functors can be expressed Eilnberg-Mac Lane cohomology. describe detail groups symmetric fusion categories and pointed categories.
منابع مشابه
On Braided Tensor Categories of Type Bcd
We give a full classification of all braided semisimple tensor categories whose Grothendieck semiring is the one of Rep ( O(∞) ) (formally), Rep ( O(N) ) , Rep ( Sp(N) ) , or of one of its associated fusion categories. If the braiding is not symmetric, they are completely determined by the eigenvalues of a certain braiding morphism, and we determine precisely which values can occur in the vario...
متن کاملHopf Galois Extension in Braided Tensor Categories
The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...
متن کاملOn Algebraic Construction in Braided Tensor Categories
Braided Hopf algebras have attracted much attention in both mathematics and mathematical physics (see e.g. [1][4][13][15][17][16][20][23]). The classification of finite dimensional Hopf algebras is interesting and important for their applications (see [2] [22]). Braided Hopf algebras play an important role in the classification of finite-dimensional pointed Hopf algebras (e.g. [2][1] [19]). The...
متن کاملRepresentations of vertex operator algebras and braided finite tensor categories
We discuss what has been achieved in the past twenty years on the construction and study of a braided finite tensor category structure on a suitable module category for a suitable vertex operator algebra. We identify the main difficult parts in the construction, discuss the methods developed to overcome these difficulties and present some further problems that still need to be solved. We also c...
متن کاملBraided Clifford Algebras as Braided Quantum Groups
The paper deals with braided Clifford algebras, understood as Chevalley-Kähler deformations of braided exterior algebras. It is shown that Clifford algebras based on involutive braids can be naturally endowed with a braided quantum group structure. Basic group entities are constructed explicitly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica-new Series
سال: 2021
ISSN: ['1022-1824', '1420-9020']
DOI: https://doi.org/10.1007/s00029-021-00670-1